UDMTEK OPTRA platform for Enhancing Quality, Productivity, and Equipment Efficiency

 UDMTEK has developed MLP (machine language processing) technology for the first time by interpreting static control language when the control program is present and understanding the dynamic data flow when the control programs is executing.

1. Company Introduction

•

Company Introduction

Leading Innovator in Al-Driven Smart Manufacturing

2019

Unified Digital Mar	nufacturing Technology	 2019 Raised KRW 4 billion in funding from KB and DAOL 2020 Expanded of UDMTEK Black-box™ & UXIM Analyzer (MOBIS, LGES) 2021 Registered as one of APAC CIO Outlook Manufacturing
Establishment	May 28, 2007	Top10 ■ Raised KRW 3 billion through DS Asset investment ■ Supplied UDMTEK Black-Box [™] to Hyundai-Kia Motors
🕾 Employee	52	 Growing industry presence, Electronics / PCB: SEMC, SIFLEX, DAEDUCK
📝 Business	Industrial AI , Edge analytics, and Digital t	win Batteries: Innometry, LG Energy Solution, SK On Others: LS Electronics, Hyundai MOBIS, Jinsun TEC, SK
A Office	Ace Gwanggyo Tower 2, #1401 Changryong-daero 256th gil, Suwon-si, F	 Selected as TOP 10 Most Influential Companies on the year
📑 Homepage	www.udmtek.com	 2023 Corrected us for the west mindential companies of the year 2023 Corrected us for the west mindential companies of the year 2023 KRW 10 billion from Eugene Investment & Securities
Telephone	82-1661-1888	Listed on the Korean IPO market (Nov. 20th)

 Growing partnerships with major industry leaders such as SK Group, LG U+, POSCO, and KOEN

Clients & Reward

Successive Al Projects for Various Industries

UDM Platform Overview

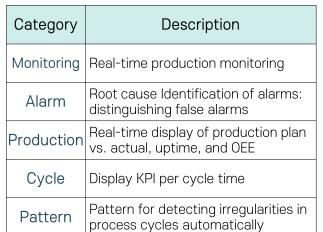
All-in-One Platform for Machine, Production, and Quality

Equipment

Description

- Real-time monitoring and root cause tracing through abnormal operation replay
- Al-driven anomaly detection and predictive
 maintenance to reduce unplanned downtime

Features


Category	Description
Monitoring	Real-time production monitoring
Alarm	Root cause Identification of alarms: distinguishing false alarms
Lifecycle	Show component usage status and remaining lifespan
Pattern	Pattern for detecting irregularities in process cycles automatically
Trend	Predictive alerts based on control operation time trends
Signal	Root cause identification of anomalies via Gantt and ladder logic chart analysis

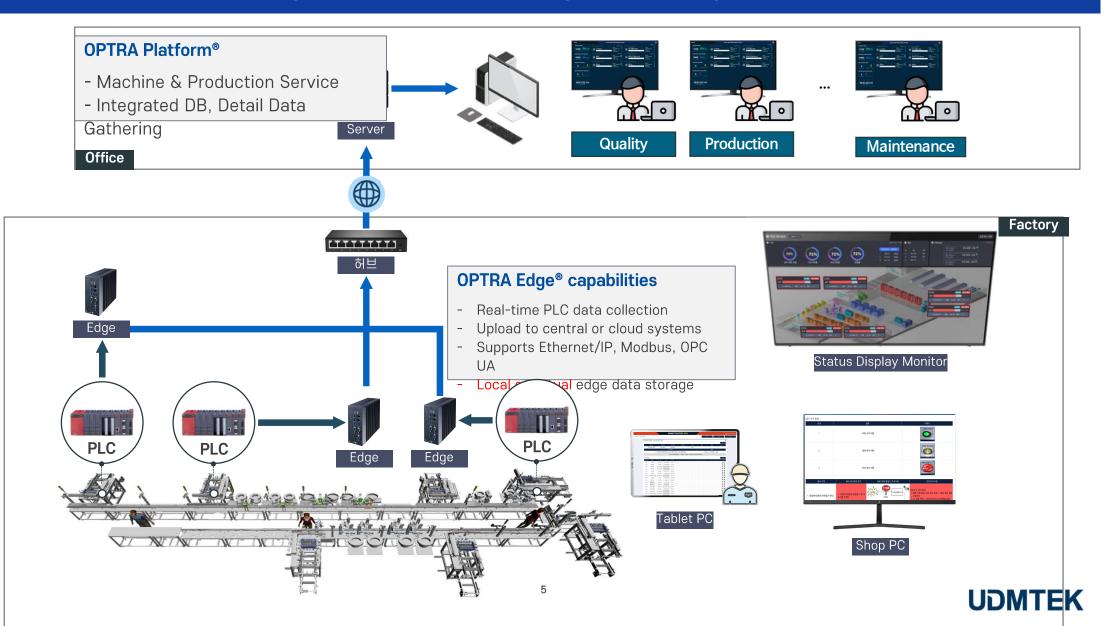
Production

Description

• Real-time monitoring of production status, process tracking, and detailed OEE reporting to boost productivity

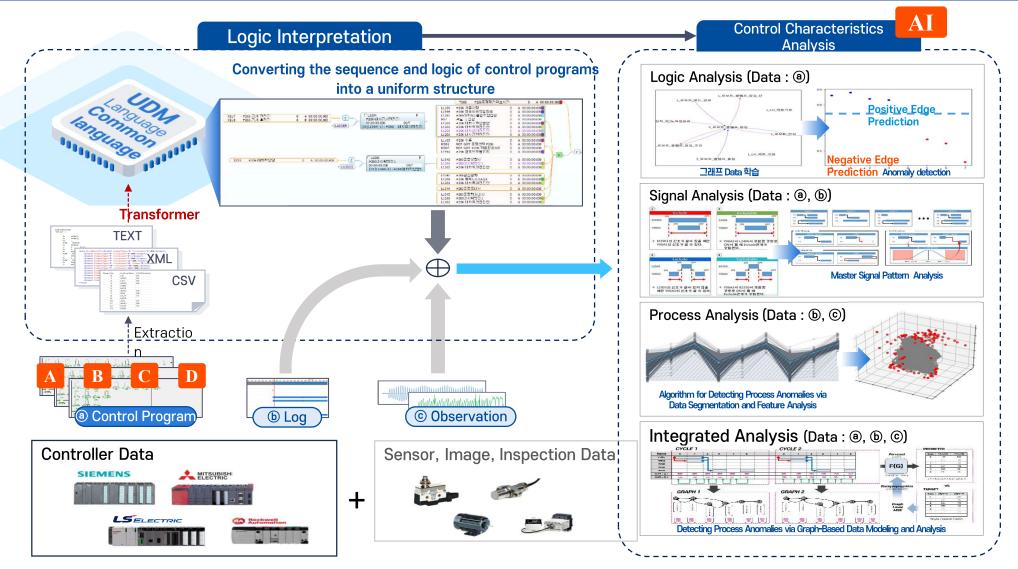
Features

Description


• Detect abnormalities to identify defects, predict quality with AI, and reduce defects through proactive analysis

Features

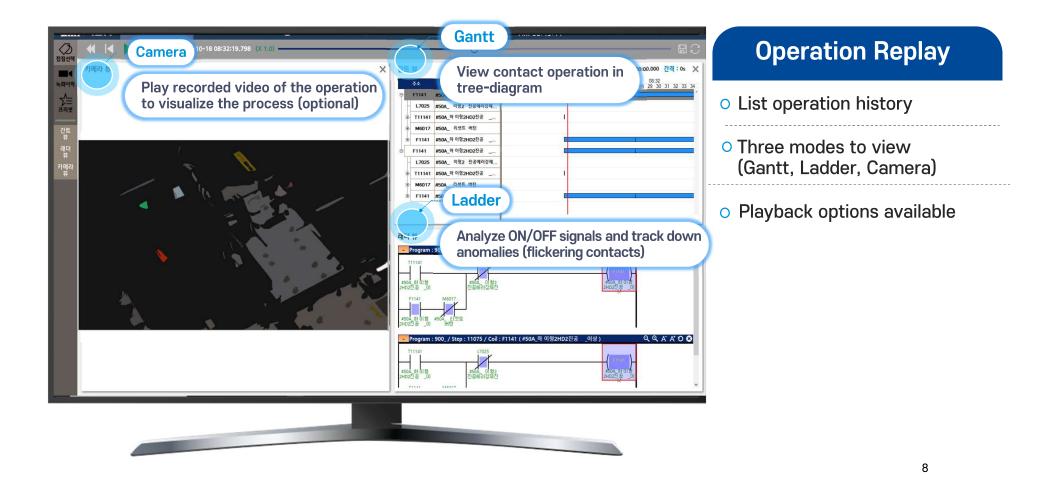
Category	ory Description	
Monitoring	Real-time production monitoring	
Alarm	Root cause Identification of alarms: distinguishing false alarms	
Prediction	Defect prediction, root cause analysis, anomaly detection, and condition optimization	


System Configuration

Integrated Platform and Edge Computing Structure

Key Technology

Exclusive Global Technology for Control Logics Interpretation



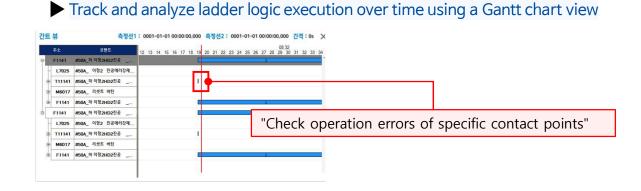
2. Key Functions

.

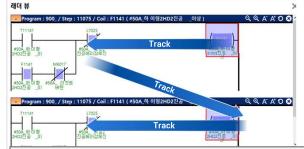
Function: Signal Analysis

Replay of Process Operations at the Time of Past Alarms and Anomalies

Function: Signal Analysis


Replay of Process Operations at the Time of Past Alarms and Anomalies

► Image replay aligned with ladder logic execution for visual inspection of control signal behavior

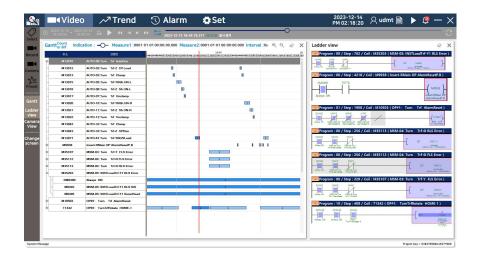

Control Logic & Machine Synchronization Live Logic View + Image-Based Process Visualization

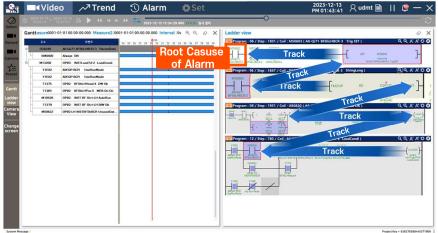
Track equipment position during specific control process events

 Ladder View for Time-Specific Logic Inspection and PLC Operation Review via Ladder Visualization

Analyze past signal paths to determine failure causes and highlight the end control contact in the logic flow.

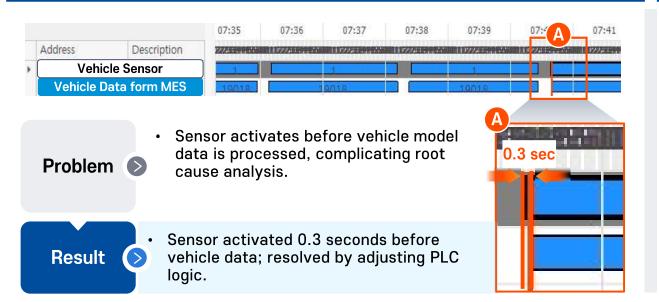
Function: Signal Analysis (Demo)

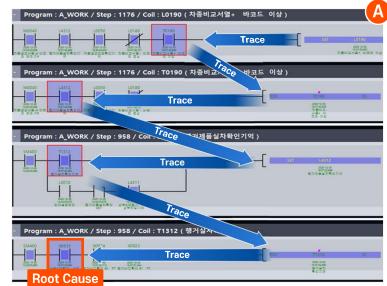

Replay of Process Operations at the Time of Past Alarms and Anomalies



LG Energy Solution – Poland Plant

Replay of Process Operations– PLC Gantt/Ladder View Tracking

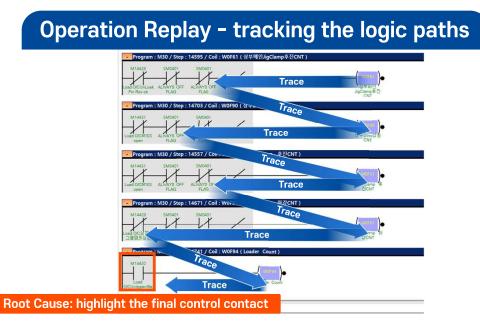


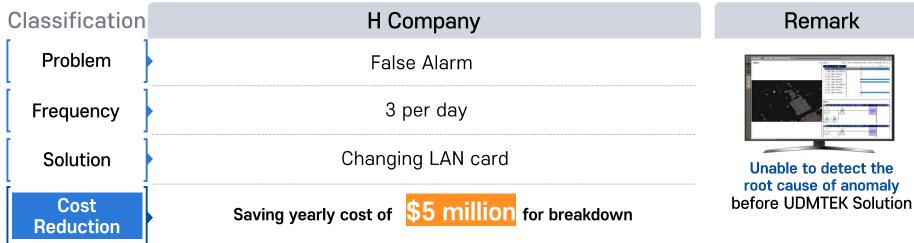

	Content	Gantt chart and ladder view analysis
	Problem	Silent stoppages in the TURN TRANSFER loader
[Occurrence Times	6 times per Day
[Rott Cause	Silent stoppage caused by sensor failure, triggered by voltage drop
	Resolution	Preventing malfunction by adjusting sensor relay wiring

Reference: Signal Analysis

Gantt View

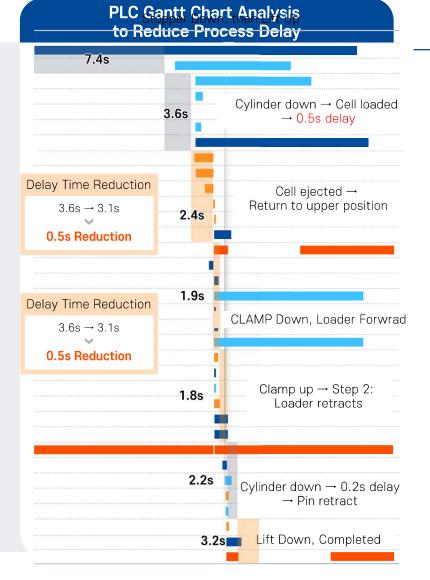
Ladder View (tracking)

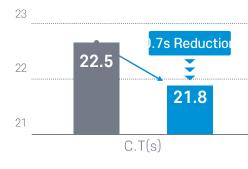

Classification	H Company	Remark
Problem	Vehicle data input error	
Frequency	3 per day	
Solution	Changing PLC (controller logic)	Unable to detect the
Cost Reduction	Saving yearly cost of \$20 million for breakdown	root cause of anomaly before UDMTEK Solution

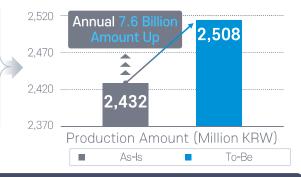


12

False alarm – Trace the logic paths to identify false alarm causes and


highlight the final control contact in the sequence.


LG Display (Display Area)


Cost-Benefit Analysis of Line 2 Design Implementation at Company L (Per Line Basis)

Class	Classification		C.T(s)	UPH (Hourly throughput)	Production Capa. (EA)	Production Cost(KRW	Production Amount (KRW)
Line 1	2019 Result(s)	3,766	22.5	160	602,560		22,897,280,000
Line O	AS-IS	4000(Target)	22.5	160	640,560	38,000	24,320,000,000
Line 2	То-Ве	4000(Target)	21.8	165	660,560		25,080,000,000
Benefit							760,000,000

Cycle Time Due to Process Optimization

Production Gains by Improvements

Full-line improvements boost equipment utilization and maximize production output.

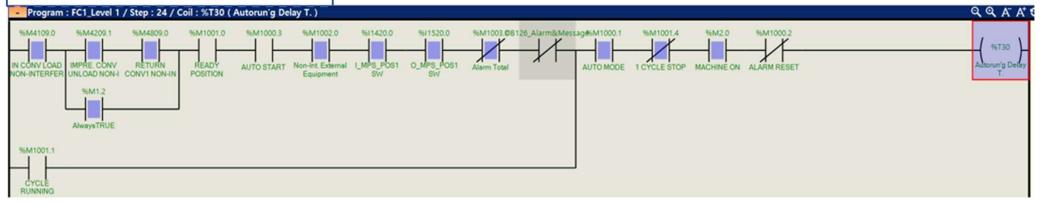
	1 Year	2 Year	3 Year	5 Year	10 Year
Applied lines	10	15	20	25	50
Benefit (Billion)	76	114	152	190	380

% Annual production gain projected by applying improvements to 5 lines

GM Automotive Plant in Korea

1) Problem Occurrence

The robot intermittently stopped during automatic startup without generating any error messages or alarms.


2) Root Cause Identification

Robot stoppage reoccurred due to a control logic error—pressing the Alarm Reset button, despite no alarms being active, triggered an unrelated sequence, causing a 110-minute halt.

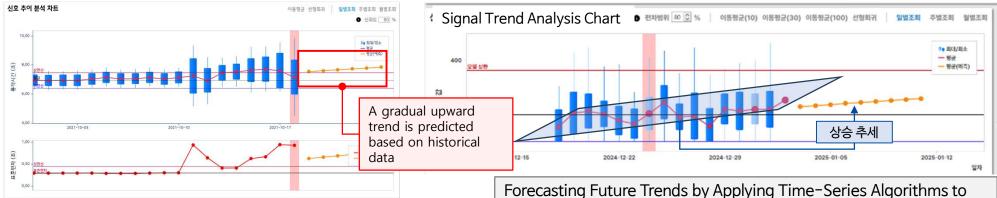
3) Resolution

The problem was fixed by updating the control logic.

트뷰		비활성 접점 표시 타이	이머/카운터 Bit 상태 표시	지시선 크기 : 🗕	O- 측정선1 : 2023-11
주소	코멘트	08:12)11123454749922392828983338	5533994439494945652385538901	00009070101214542499222	08:13 82828983333858389958845656585
RCVDP_DB_MC1					
%M3.1	SAFETY OK		1		1
%M3.7	EMG STOP NORMAL		1		1
%M2.0	MACHINE ON		1)
%T30	Autorun'g Delay T.				
%M1001.1	CYCLE RUNNING		1		
%M4100.1	IN CONV CLAMP READY	1			
%M1000.2	ALARM RESET			(.)
%M1000.1	AUTO MODE				
%M1000.3	AUTO START				
%M4102.0	IN AUTO RUN'G SUP.		1		
%M4110.0	IN CONV CYCLE START		1		
%M3570.2	OUT CONVI FEED MOTOR LS FA				

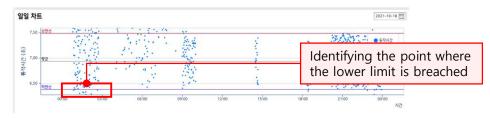
Function Trend Analysis

Operational Time Trend Analysis for Predictive Maintenance



Function Trend Analysis

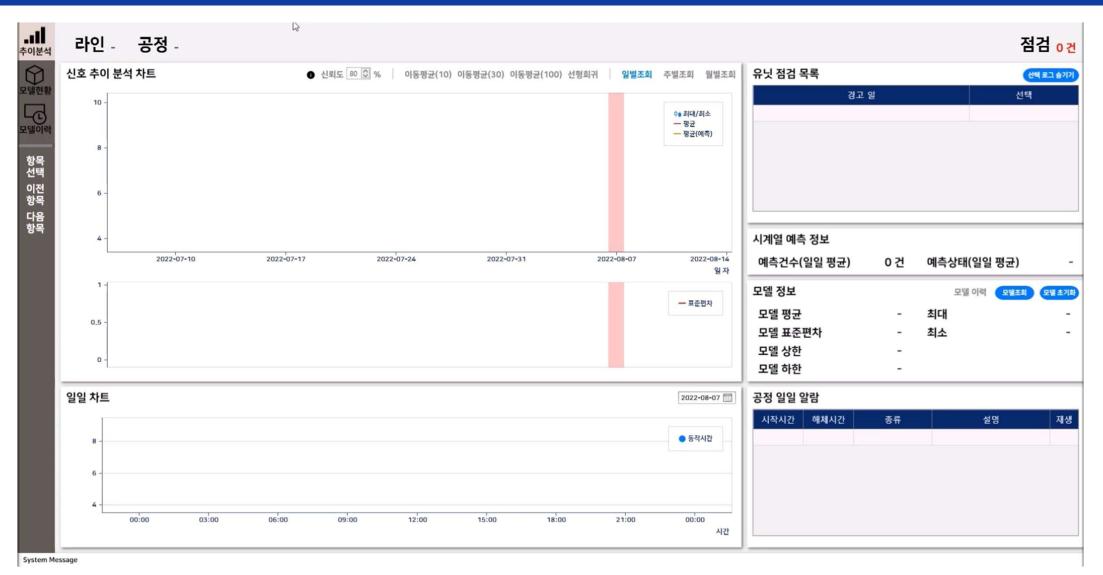
Operational Time Trend Analysis for Predictive Maintenance


Anomaly Detection via Operation Time Trend Charts

: Utilizes time-series analysis on historical operational data

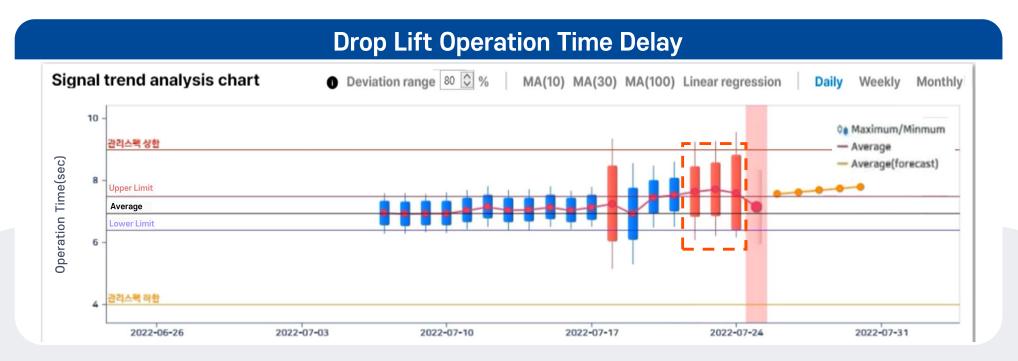
Trend Change Detection with Daily Runtime Charts

: Visualizes point-in-time data through scatter plotting.


Forecasting Future Trends by Applying Time-Series Algorithms to Historical Data

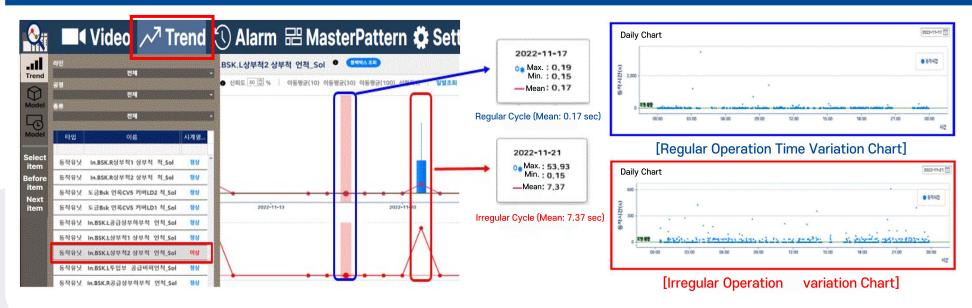
(Time-Series Algorithms)

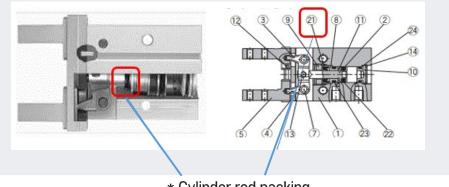
- **Moving Average**: Smooths out short-term fluctuations to better reveal the overall data trend
- Double Exponential Smoothing: A forecasting method that considers both level and trend components of time-series data
- ARIMA (AutoRegressive Integrated Moving Average): Predicts future values based on the autocorrelation of past data
- LSTM (Long Short-Term Memory): A type of recurrent neural network that learns complex time-series patterns for nonlinear future prediction


Function Trend Analysis (Demo)

Operational Time Trend Analysis for Predictive Maintenance

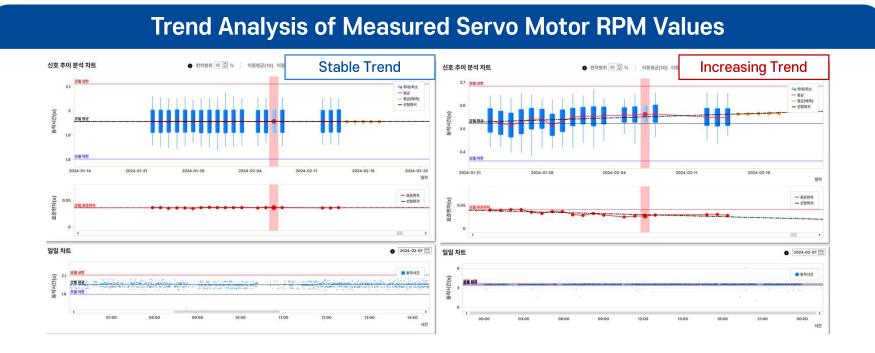
Reference: Trend Analysis


Kia Plant: Trend Analysis to Support Preventive Maintenance

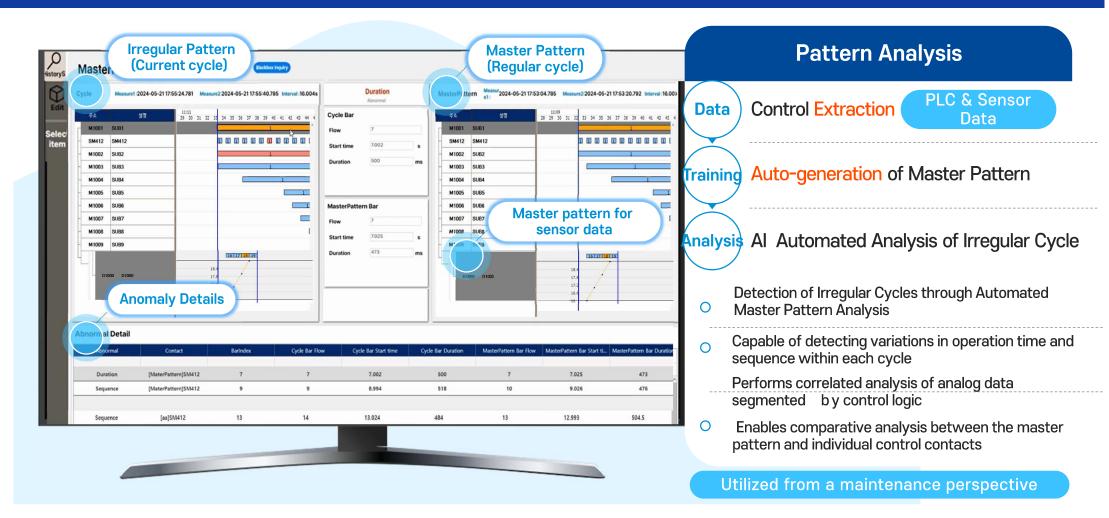

Classification	H Company	Image
Problem	Drop lift operation time delay	
Solution	Changed drop lift belt for future downtime	
Cost Reduction	Saved yearly cost of \$15 million for downtime	

Reference: Trend Analysis (S. Electronic Company)

Trend Analysis – Cylinder Operation Time Variation


Classification	S Company
Problem	Significant variation in cylinder operation time
Root cause	The wear of cylinder rod packing
Resolution	Replacing clamp cylinder

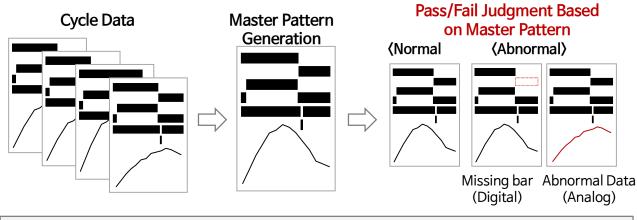
* Cylinder rod packing


Reference: Trend Analysis

Content	L Company
Anomaly Detection	The regression line of the measured values shows an increasing trend
Root Cause	Degradation of electrical contact performance due to brush wear inside the servo motor
Resolution	No urgent replacement needed, but scheduled for preventive maintenance.

Function Pattern Analysis

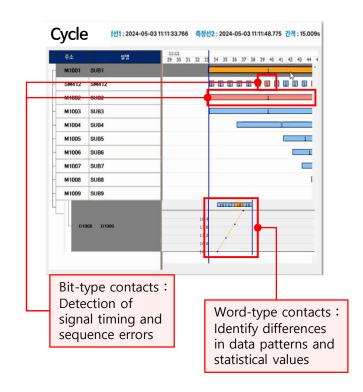
Master Pattern for **Detecting Irregularities** in Process Cycles Automatically



Function Pattern Analysis

Master Pattern for **Detecting Irregularities** in Process Cycles Automatically

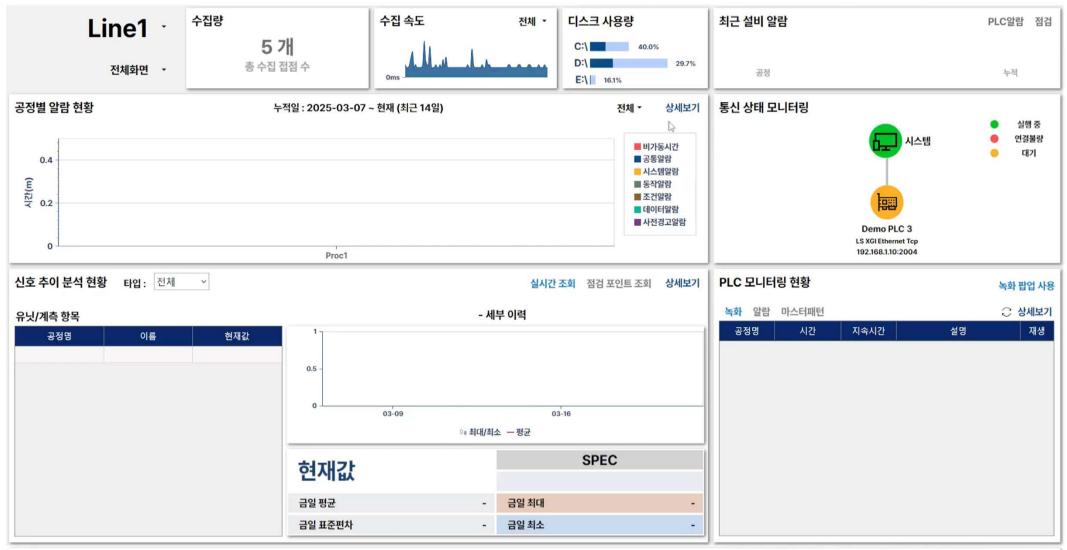
- Master pattern represents the typical behavior of a repeated operation
- By analyzing the shape of each process cycle, the system automatically identifies abnormal patterns that differ from the master pattern



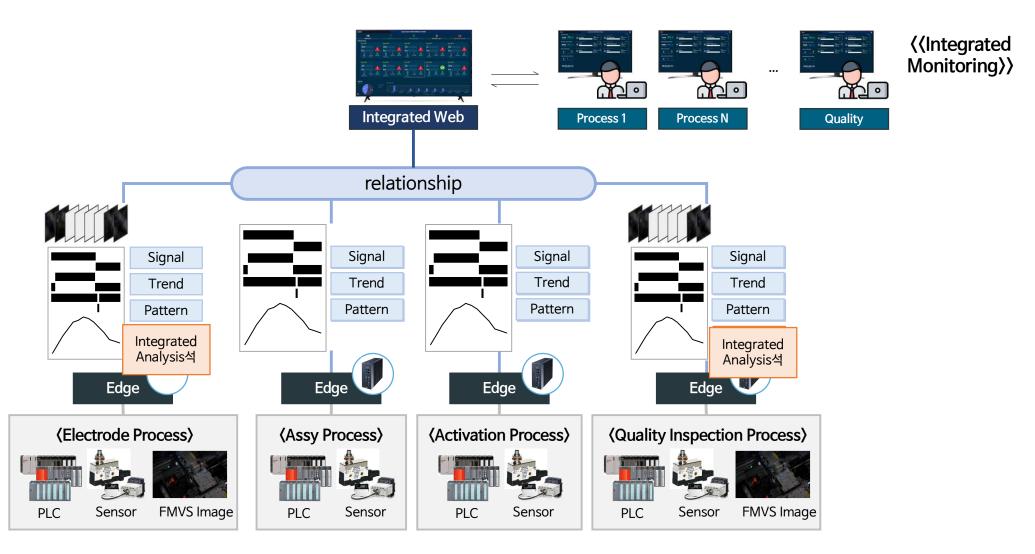
Apply time-series algorithms to historical data to forecast future trends (Deep Learning-Based Classification Model)

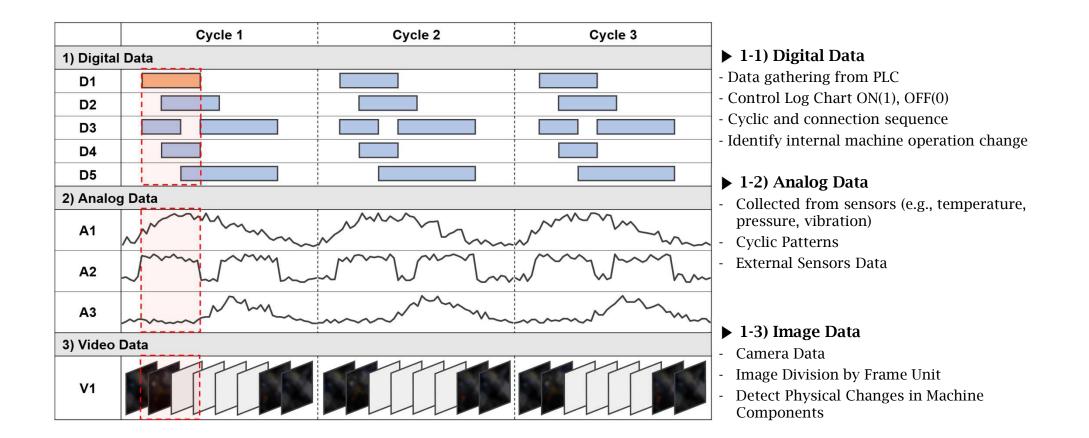
- CNN Autoencoder: Trains on normal cycle data to learn pattern characteristics and detect deviations.

(Cycle Learning Overview)


- A master pattern is generated by learning the characteristics of a sufficient number of identical process cycles.
- Bit-type contacts: Includes features such as the number of bars per cycle, the operation time of each bar, and their execution order.
- Word-type contacts: Analyzes changes in word values during the cycle (e.g., statistical summaries, variation trends).

Function Pattern Analysis (Demo)


Master Pattern for **Detecting Irregularities** in Process Cycles Automatically


Project Key = 638747946842182376

3. Integrated Analysis

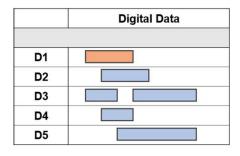
Integrated Analysis of PLC, Sensor, Image(FMVS), and Inspection Data

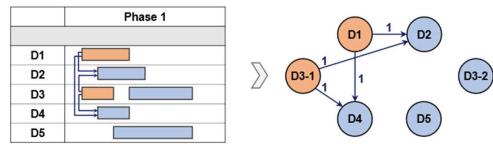
1) Data Segmentation

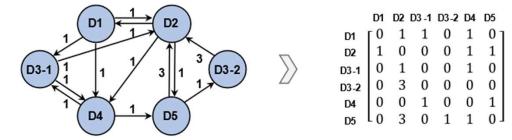
Based on digital data, extract analog and image data separately for the specified control interval

2) Generating Adjacent Matrix

D3-2


D2


D5


D1

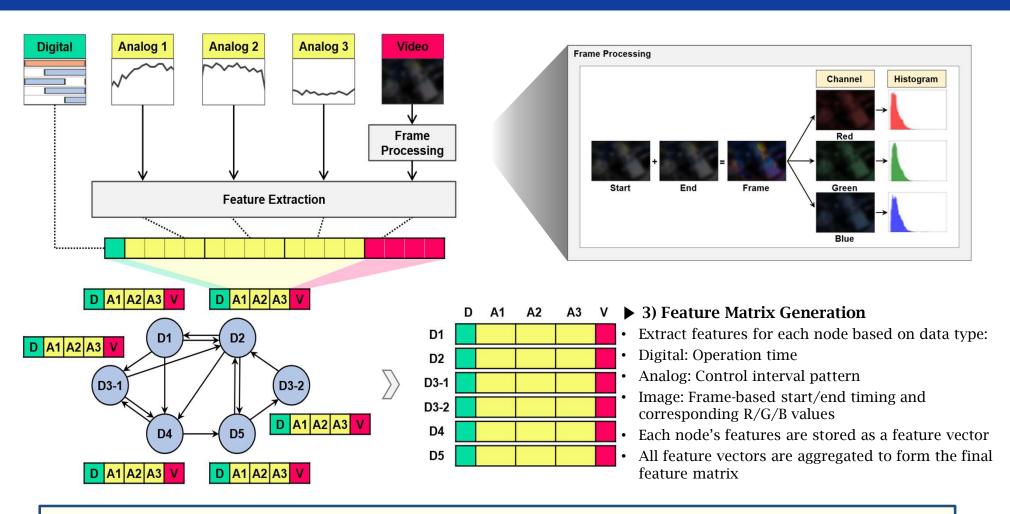
D4

D3-1

▶ 2-1) Node Generation

- Each contact point is represented as a node
- Additional nodes are created according to the number of operations occurring within a single cycle

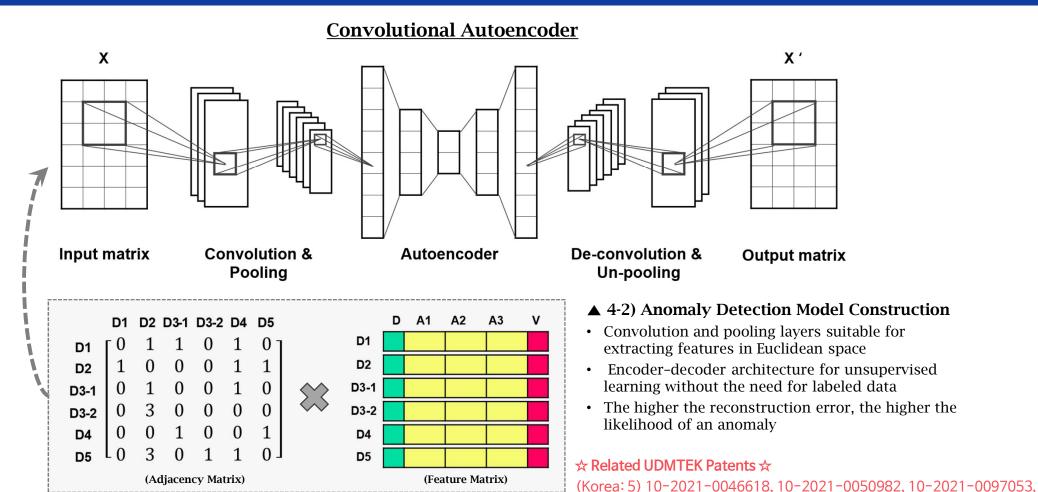
> 2-2) Connect Adjacent Nodes


- From the start time of the previous node \rightarrow to the start time of the next node
- The edge weight is defined as the time difference between the two operation start points
- This process is repeated until no further successor nodes exist

▶ 2-3) Generating Adjacent matrix

- Construct a directed and weighted adjacency matrix
- Includes both the start and end points of control operations (forward and reverse directions)

Generate an adjacency matrix representing edges and weights connecting nodes in both forward and reverse directions


3) Generating Feature Matrix

Generate a feature matrix to distinguish between normal and abnormal states

based on differences in data patterns

4) Anomaly Detection Model Construction

▲ 4-1) Input Matrix Generation for the Model

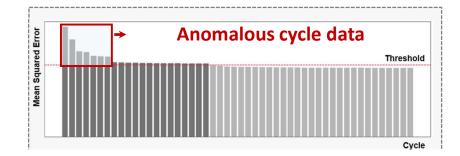
- Matrix multiplication between the adjacency matrix and the feature matrix
- Results in the final graph-structured input data

UDMTEK

10-2024-0067503, 10-2025-0029505

(USA: 3) 17/658,553, 17/756,460, 17/813,738

(Japan: 1) 2023-564610


30

5) Analysis Result

Model	Size of Kernel	Activation Function	Optimizing Function	Size of Filter	MSE
1	3	ReLU	Adam	8	0.1869
2	3	Tanh	RMSProp	32	0.1871
3	3	Tanh	Adam	32	0.1875
4	3	ReLU	RMSProp	16	0.1877
5	3	ReLU	RMSProp	32	0.1877
6	3	Tanh	RMSProp	16	0.1877
7	3	ReLU	Adam	16	0.1878
8	3	Tanh	RMSProp	8	0.1885
9	3	ReLU	Adam	32	0.1900
10	3	ReLU	RMSProp	8	0.1901
11	3	Tanh	Adam	16	0.1905
12	2	ReLU	Adam	32	0.1940
13	3	Tanh	Adam	8	0.1942 •
14	3	Sigmoid	RMSProp	32	0.1964 •
15	3	Sigmoid	Adam	32	0.1968
16	2	ReLU	Adam	16	0.1979

Anomaly Detection Model

- Utilizes a Convolutional Autoencoder (CAE) architecture
- Optimal hyperparameter combinations are explored using grid search
- Key parameters include:
- (Convolutional) kernel and filter sizes
- (Autoencoder) activation functions and optimization algorithms
- Lower MSE (Mean Squared Error) indicates better model performance

▲ Model Analysis Results

- Select cycles with the highest MSE values from the entire prediction results
- If the MSE exceeds a defined threshold, the likelihood of anomaly increases (\triangle)
- Threshold is defined as: \rightarrow Mean of all MSE values + (3 × standard deviation)
- Cycles flagged as anomalous require further root cause analysis

Optimize model hyperparameters to maximize prediction accuracy and

train the model for anomalous cycle detection.

5) Analysis Result


Cycle	Туре	Node	Variable	Feature	Plot	Distance	MSE
0069	Digital	Y1001	Duration	-	H-	33.73	0.308
	Digital	Y1009	Duration	_	⊢∏⊢⊣	31.85	
	Digital	Y1035	Duration	_	H	29.19	
1186	Analog	Y1014	Coolant Temperature	Shape Factor		44.05	0.273
	Analog	Y1014	Coolant Temperature	Root Mean Square	⊨ <u> </u> ⊢ – <u> </u> – – – – – – – – – – – – – – – – –	10.04	
	Analog	Y1014	Coolant Temperature	Mean		10.03	
0470	Digital	Y1003	Duration	-		18.56	0.240
	Digital	Y1009	Duration	_		12.99	
	Analog	Y1014	Red	Standard Deviation		8.97	

Analyze multiple variables from various perspectives to identify and

address the most influential root cause of the anomaly

6) Implementation

Production Optimization through Integrated Analysis, Leading to Continuous Quality Innovation

Technology		Summary	Effectiveness			
Key Function		Replay of process operations at timestamps associated with historical alarms and anomalies				
	1) Signal Analysis	 Reproduce historical PLC ladder logic at specific timestamps Visualize process flow through Gantt and Ladder views Replay linked process images for contextual analysis 	 Fast alarm diagnostics to reduce downtime Root cause analysis of anomalies to prevent recurring failures and improve process reliability 			
		Operational Trend Analysis for Predictive Maintenance				
	2) Trend Analysis	 Anomaly prediction based on automatic detection of trend changes Signal trend analysis chart: Time-series forecasting based on historical data Daily chart: Detects detailed data variations over time 	 Proactive anomaly detection reduces defects through timely maintenance Optimized maintenance scheduling lowers overall maintenance costs by avoiding unnecessary interventions 			
		Master Pattern for Automatically Analyzing Irregularities in Process Cycles				
	3) Pattern Analysis	 A master cycle pattern is created by aggregating multiple instances of cycle data Digital signals are analyzed using Gantt charts, while analog trends are evaluated through waveform analysis A classification-based AI model is employed to automate normal/abnormal cycle detection 	 Reduce operator time by minimizing manual monitoring tasks Automatically detect irregular anomalies to enhance quality stability 			
Added Tech.		Integrated Analysis of Digital (PLC), Analog (Sensor), Image (FMVS), and Inspection Data				
	4) Integrated Analysis	 Consider all data generated during a single operation cycle—digital, analog, and image Automatically detect anomalies from each type of data 	 Maximize efficiency in quality, production, and equipment management through automated anomaly detection and classification Enhance root cause analysis accuracy for process defects through multi-source data analysis 			

Unified Digital Manufacturing Technology

Thank You